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Abstract. A preliminary analysis of irreducible unitary representations of SL(3, R)  is given 
using O(3) shift operator techniques similar to those used for treating SU(3) in an O(3) 
basis. A full analysis is given of the A1 = 2 representations, for which minimum l values 
of 0, f and 1 are found, but not the l m i ,  = $ representations proposed by Biedenharn et al. 

1. Introduction 

In previous papers (Hughes 1973a, b, to be referred to as I, 11) the O(3) content of irre- 
ducible unitary representations (IUR) of SU(3) was analysed, using two pairs of operators 
which shift the value of 1 (where l( l+ 1) is the eigenvalue of the O(3) Casimir L2)  by k 1 
and & 2. It was pointed out in I1 that very minor modification of these techniques would 
be needed in order to give a similar analysis of SL(3,R), which is the non-compact 
version of SU(3) containing O(3) as a maximal compact subgroup, as opposed to  SU(2) 
which is a maximal compact subgroup of the non-compact version SU(2, 1). In this 
paper some preliminary results in this direction are given, but the analysis will not 
extend as far as considering 1-degenerate states, whose treatment, difficult enough for 
SU(3), is even more complicated for SL(3, R) whose IUR are infinite dimensional. 

The only IUR which will be completely analysed here are the harmonic oscillator-like 
AI = 2 representations, for which no 1 degeneracy occurs. These have been considered 
by Biedenharn and collaborators and used to treat nuclear rotational motion 
(Biedenharn and Weaver 1972) and hadronic Regge sequences (Biedenharn et a1 1972). 
In the latter paper they extend a proposal by Dothan, Gell-Mann and Ne’eman (Dothan 
et a/ 1965, Dothan and Ne’eman 1966) that SL(3, R) be considered as generating orbital 
excitations in hadronic states by suggesting that it can also function as the generator of 
combined orbital and spin excitations. Using a realization of the Lie algebra of SL(3, R) 
in terms of boson creation and annihilation operators, they derive four AI = 2 IUR with 
minimum 1 values given by lmin = 0, $, 1 and 5 ;  these they associate with, respectively, 
the n, p, N and A Regge trajectories. Whereas the first three IUR are fully confirmed by 
the techniques of this paper, they appear to exclude the lmin = 3 IUR. 

The first step in a general analysis of IUR of SL(3, R) is to consider the restriction that 
the hermiticity conditions impose on the values of the invariants I ,  and I ,  ; this is found 
to restrict the possible IUR to one of two types. The next step is to obtain all possible 
minimum values of 1 (no maximum 1 value can be expected since the IUR must, with the 
exception of the identity representation, all be infinite dimensional) ; in doing this all the 
hermiticity requirements on the shift operators themselves must also be satisfied. The 
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analysis up to this stage does not exclude the possibility of IUR with Imin having any 
non-negative half-integral value, although of course, except for the cases where lmin = O,$, 
or 1, none of them are of the AI = 2 kind. Further analysis may be expected to impose 
further restrictions on the IUR which actually do occur, but this will not be pursued in the 
present paper since the problem of I degeneracy then arises. 

Various products of the shift operators were written down explicitly in I (equations 
(35)-(44)) only for the case where m (the eigenvalue of the generator 1, of O(3)) = 0. In 
order to deal with IUR containing half integral I ,  which clearly contain no m = 0 states, 
these expressions have to be modified. In fact their generalization to states of arbitrary 
m turns out to be extremely simple, and further, by a suitable renormalization of the 
shift operators, the m dependence of the products of these operators can be eliminated, 
although care must be taken when doing so. This is done in Q 2, and the expressions given 
are valid for both SU(3) and SL(3, R). The transition from SU(3) to SL(3, R) is effected 
merely by changing the hermiticity requirements on the various operators, and these are 
listed also in Q 2. The exact analysis of the AZ = 2 IUR, and the preliminary analysis of 
general IUR of SL(3, R), is given in 4 3. 

2. The group SL(3, R) and its shift operators 

Like SU(3), the group SL(3, R) is generated by the O(3) generators Ii (i = 0, f 1) and the 
operators q,, (p = 0, f 1, +2) which transform under commutation with the Ii as a five- 
dimensional irreducible tensor representation of O(3). The commutation relations of the 
I i ,  q,, are exactly the same as for SU(3) and are given in (I, 4) and (I, 5).  The difference 
between the two groups lies entirely in the hermiticity properties of the q,,, namely 
q/J = q - p  for SU(3) and q/J = - q - p  for SL(3, R). This means that all operators con- 
structed from the generators in I for SU(3) go over unchanged for SL(3, R), as do all 
their commutation relations and all equations connecting them which do not involve 
hermitian conjugation. 

1 - 1  2 
2 - 9(P + 4,  - P4 + 3P) 

1 3  = &(P - 2qNP + 3 - 4)(P + 4 + 3). 

The eigenvalues of the group invariants I ,  and I ,  will still be denoted by 

(1) 
and 

(2) 
Thus IUR of SL(3, R) will still be labelled by the pair ( p ,  q)  although, unlike for SU(3), 
they will not necessarily constitute a unique label. The other operators needed for our 
analysis are, apart from the O(3) invariant L2,  the third and fourth order O(3) scalar 
operators 0: and Qf, respectively, and the operators 0:j ( j  = 1,2) which shift the 
I values of states upon which they act by + j .  These operators are given in terms of the 
I i ,  q,, by equations (I, 6)  to (I, 9) and (I, 14) to  (I, 17). The states upon which these operators 
act will be chosen orthonormal and denoted by Ip, q, r ;  I, a,, m),  where ( p ,  q, r) labels the 
IUR and (I, a,, m) the states within an IUR. r is an additional parameter needed if ( p ,  q) 
do not alone uniquely determine the IUR, Z(I + 1) and mare the eigenvalues of, respectively, 
L2 and I , ,  and a, is an additional label used to distinguish states of degenerate I values 
which may be defined in terms of the eigenvalues of 0: and Qf (see 11). 

The hermiticity properties of these operators differ from the case of SU(3), and 
depend on the orders to which they contain the q,,. Thus, as for SU(3), I, and Qf are 
hermitian operators although I ,  is no longer positive definite, whereas I ,  and 0: are 
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= aj,t(P, 4, r ;  I ,  a,, mlO;2jlP, 4, r ;  I+j,  bl+j ,  m> (3) 

(4) 

As a consequence of this, equations (I, 28) to ( I ,  31) remain unchanged but in the first 
two of these the new values of aj , l  apply and imply that Ofkj 0 : j  are negative (instead of 
positive) definite hermitian operators, while (I, 33) and ( I ,  34) now contain a minus sign 
implying that O f i l  07i2 0: 0:21 0: ’ are anti-hermitian conjugates, as 
are 0;+ll 0,!-21 0; ’ and O;-ll O ; . ,  0: l .  

This completes the summary of the modifications needed to the various SU(3) opera- 
tors in order that they be applicable to SL(3, R). There is, however, a further minor 
sophistication which can be made and which applies equally to both groups. In I explicit 
expressions were given for those products of the shift operators which commute with L2 
in terms of the group invariants and O(3) scalar operators. They were, however, calcu- 
lated only for the case when they act on states for which m = 0. This was good enough for 
SU(3), but clearly inadequate for investigating possible IUR of SL(3, R) containing half 
integral I ,  and consequently also m, values. As it turns out, the generalization to the case 
of arbitrary m is almost trivial, the only modifications to equations (I, 35), . . . , (I, 44) for 
the product operators being to the denominators on their left-hand sides; these are that 
every factor of the type ( I  + n)’ is replaced by ( I  + m + n)(I- m + n). The right-hand sides 
of the equations are completely unchanged. 

where now 

aj,l  = -(21+ 1)/(21+2j+ 1 ) .  

and 

One may go further and define the operators A:’ by 

A:’ = [ ( l + m +  1)(I-m+ 1)]-’’20:’ 

A:2 = [ ( I+m+ 1)(I-m+ 1)(I+ m+ 2)(I- m+ 2)]- 1’20:2 

A;’ = A+J 

( 5 )  

(6 )  

j = 1,2. (7) 

and 

- ( 1  + 1 )  , 
Note that the expression for A;’ in terms of 0 ; j  contains (IZ -mZ)- 1 1 2 .  This is 

exactly cancelled by the same factor in the matrix elements of O;j ,  whose presence there 
guarantees that 0 ; j  cannot act upon states with 1 = Im( to give states with I < Iml. 
A ;  j acts on states whose m dependence has been factored out and is therefore free of such 
constraints. In fact, when one then writes down for these operators the analogues of 
( I ,  3 9  . . . , (I, 44) one finds that the m dependent dominators are completely eliminated. 
Furthermore, the A:’ satisfy precisely the same commutation relations with L2, and 
the same hermiticity properties, whether for SU(3) or SL(3, R), as the corresponding 
0:j. By using A:’ instead of O:J, one therefore completely eliminates all considerations 
of the O(3) subgroup from the analysis without any loss of generality, and this we do in 
the rest of this paper. 

For ease of accessibility we list here the expressions for the most useful product 
operators ; the others can easily be obtained from the corresponding formulae of I. They 
are 

A;>,A: = -&0:)’-&(1+ 1)(1+3)Q:+24I(I+ 1)2(21+3)12 

- 241 + 1)2(213 + 8 1 2  + 121 + 27) 
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A:-',A; = - $(OP)' - $ ( I -  2)QP + 2412 ( I  + 1)(21- 1)12 

- 2i2(1 + 1)(213 - 212 + 21 - 21) 

A;,Z,A: = &Op)2 +f(21+ 3)(21+ 5)Qp + 24(1+ I)( /+ 4)(21+ 3)'12 
-21(1+ 1)(21+3)(213+2512+31+3) 

A:-22A;2 = $(Op)2+i(21- 1)(21-3)Q:+241(1-3)(21- 1)21, 

-21(1+ 1)(21- l)(2j3- 19i2+91+27) 
9 ~ + l  ~ + l  A - 2  

1 - 1  1 - 2  I 

= - 3(Op)3 - 3(12 - 31 + 1)QpOp - a(21- 1)(1- 3)(1- 4)[QP, Op] 

+4321(1- 1)(21- l)I2Op+ 1296,/612(1+ 1)(1-3)(2/- l)2Z, 

- 181(1+ l)(214-413+412-261+9)0p. 

3. IUR of SL(3, R) 

We start this section with a full analysis, similar to that given for SU(3) in 11, of all the 
AI = 2 IUR of SL(3, R), ie those for which 1 occurs in steps of two. These are the simplest 
IUR which can occur, since the A: have vanishing actions on all states, which may 
therefore be interconnected by only one pair ofshift operators, the A: ', and consequently 
no possibility of 1 degeneracy arises. We shall suppose that all operators act to the right 
on states Ip, q, r ; 1, a l ,  m) ; however a, is not needed since I is simple, I o  commutes with all 
operators and their actions are all independent of m, and the values of p ,  q, r will always 
be clear, so we shall in fact omit the states from all equations. 

The necessary conditions for the IUR ( p ,  q, r') that A1 = 2 is that, for all I ,  

(13) A - l A + '  = A + ' A - - l  = 0 
1 + 1  1 1 - 1  I 

and 
A + l A + l A - - 2  = 0 

1 - 1  1 - 2  1 

since all these operators contain A: l .  

obtaining 
Using (13) and equations (8), (9), we may solve for 0; and Qp in terms of I ,  and I ,  

and 

Qp = 61(1+ 1)(121,-212-21-9). (16) 

Substituting for 0; and Qp back into (10) and (1 1) then yields 

A;,2,A: 
A:-22A;2 = 2412(1- 1 ) 2 [ 9 1 2 - ( / +  1)(1-2)]. 

= 24(1+ 1)2(1 + 2)2[912 - 1(1+ 3)] 

Further, using (14H16) in (12) gives 

where the sign in (19) corresponds to that in (15). 
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Squaring (19) and using the expressions (1) and (2) for I ,  and I, in terms of p and q, 

(20) 

There appear to  be six possible cases, depending on which of the factors in (20) we take 
to be zero. In fact all cases give rise to  either the same representations or their contra- 
gredients. If we take q = 0, we obtain 

we obtain 

4(P - d ( P +  l ) (P + 3)(q + N P -  4 + 2) =o. 

1, = b ( P +  31, 1, = &P(P+3)(2P+3) (21) 

where p is arbitrary. Had we taken ( p  + 1) = 0, ( p  + 3) = 0 or ( q  + 2) = 0, we should have 
obtained the same set of values for I , ,  I, but with p replaced by, respectively, ( q  - l), q or 
( p +  1). ( p  - q)  = 0 and ( p  - q + 2) = 0 give rise to just the contragredients of these cases, 
ie I ,  + -I,. We may therefore assume, with no loss of generality, that q = 0. 

Using the hermiticity conditions that I ,  be real and I, imaginary in (21) shows that 
p = (-$+ ip,), where p ,  is an arbitrary real number. This then gives 

It is easy to  check that for these values of I ,  the requirement that A I T ~ , A i  be real and 
less than or equal to 0 for all I is satisfied. 

The possible values of lmin = I are given by the equations A:-Z,A[2 = 0. Clearly, 
whatever the value of p , ,  we can have 1 = 0 or 1 ; however [-can also arise from 
91,-(l+ 1)(I-2) = 0. With I ,  as in (22), this permits of real I only if p ,  = 0, in which 
case we obtain the repeated root 1 = f. In this case we have I ,  = -a, I ,  = 0, so that 
this IUR is self-contragredient. 

To  summarize, there are an infinite number of A1 = 2 IUR with 1 = 0 or 1, for which 
I ,  and I, are given by (22) and 

(23) 

(24) 

(25) 

0: = 2J6ip21(l+ l), 

A&A: = - 24(1+ l)’(I+ 2)’[$+ p i  + 1(1+ 3)] 

A,?-’2A;’ = -2412(1- l)’[$+p;+(I+ 1)(1-2)] 

QP = - 3[2p2, + 3(12 + 1 + 6)] 

where - x; < p ,  < so. There is also one AI = ~ I U R  with 1 = $ for which I ,  = -a, 
I ,  = 0 and 

0; = 0, QP = -2(12+1+6) 

A , Z , A : ~  = -24(1+ i ) 2 ( ~ + ~ ) 2 ( ~ + 2 ) 2  

A:-’,A;’ = -2412(1-’ 2) (1-  112. 

There is no AI = 2, I = 3 IUR, as was proposed by Biedenharn et a1 (1972). 
We now turn to  the general problem of classifying all IUR of SL(3, R). The first step is 

to use the hermiticity conditions for I , ,  I, in (1) and (2) to  find permissible values of 
p p1 + ip, and q q1 + iq,. This is a straightforward process and we state only the 
results ; these are that there are essentially two distinct types of cases : 
(i) q ,  = 0, q 1  = 2p1 + 3, so 

1, = $[3(p1 + l)(p1 + ~)-P:I (29) 
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where p 2  is arbitrary and p1 2 - 2 (the latter restriction comes about from the observa- 
tions that I , , I ,  are unaltered by the replacement of p1 by -(pl +4)). The contra- 
gredient of any IUR (p l ,  p 2 )  of this type is (p l ,  - p 2 ) .  
(ii) p1 = -2, q1 = - 1, so 

I 2 - - L (  - 9 P:+q:-P242+3) (31) 

1, = - l i (  162 P 2  -2q2)(2P2 - q 2 ) ( P 2  + q 2 )  (32) 
where p 2  and q2 are arbitrary real numbers satisfying 0 < q2 < p 2  (the latter restriction 
comes about from the observation that I , ,  I ,  are unaltered if ( p , ,  q 2 )  is replaced by 

gredient of any IUR ( p 2 ,  q,) of this type is (p2, p 2  - 42) .  
The most general intersection of these two types is when p1 = -2 ,q1  = - 1, 

q2 = 0, p ,  is arbitrary, and I ,  = -$p:+3), I ,  = -ipi/8. I t  should be noted that 
we are not claiming that IUR occur for all values of ( p l ,  p , )  and ( p , ,  q2 )  above, only 
that they are not excluded by the hermiticity requirements on I , ,  I ,  alone. 

The next step is to classify all possible values for lmin = !,,and these are determined 
by the requirement that ! be simple and A;jl!) = 0 for j = 1,2.  These imply that 

( - P 2 ,  q2-P2)9  (qt-P2r -P2)9 ( P z - ~ z ~  - q 2 ) ,  ( - 4 2 ,  P 2 - q 2 ) 3  or (q29 P 2 ) ) .  The contra- 

Substituting these equations into (9) and ( 1  1 )  one finds that, providing ! # 1, 

Qf = -6![12(2!-1)12-(!+ 1)(2!2-10!-9)] (34) 

(0;)’ = 18i2(2!- 1)2[1212-(!+ l)(!-3)] (35) 

from which we see immediately that if = 0 then QP and 0: both vanish. If 1 = 1 ,  the 
two equations (33) become, on substituting in (9) and (1  l) ,  identical, so that they do not 
on their own determine Q: and (0:)’ in terms of I , ,  We shall deal with this case later 
and assume for the time being that! # 1. 

The conditions A:_’,A!+_:A;’ = 0 leads, on substitution into equation (12), to the 
condition 

18J6!(2!- l ) l ,  = *!(2!- 1)[241,-2(!+ 1)(!-3)]”2[&!-2)-312] (36) 

which is clearly satisfied if! = 0 or i. We consider these two cases separately. Firstly, if 
! = 0,O; and Q; both vanish and from equation (8) we see that A ;  ‘A:’ = 0, so no 
1 = 1 state occurs, whereas from (IO) we see that = 8641,, which satisfies the 
hermiticity requirements provided I ,  c 0. This is always true for type (ii) IUR, but for 
type (i) IUR only if p :  2 3(p1 + l)(pl + 3). Secondly, if 1 = 3, 07,2 = 0 and Qyl2 = 

-243/4, whereas = 27(1+41,), A;:A:/; = 54(481, - 13). The hermiticity 
conditions A, :A: , :  < 0 and A;/;A:/i < 0 are again both satisfied for type (ii) IUR, but 
for type (i) IUR only if p :  2 3(p1 +3)(pl +3). 

To see if IUR with different values of I are permitted, divide (36) through by !(2!- l), 
square and substitute for I ,  and I ,  in terms of p and q. This yields the equation 

(37) (1 + p + 1)(1 - p - 3N!+ q)(!- q - 2)(!+ p - q)(! - p + q - 2) = 0 

to be satisfied by 1. 

becomes 
We treat the two types of IUR separately. Firstly, for type (ii) IUR ( p 2 ,  q,), equation (37) 

I!-1+ip2121!-1+iq,J2)!-1+i(p2-q,)J2 = 0 (38) 



U(3) shft  operators and the group SL(3, R )  785 

so no value of I arises unless either p ,  = 0, q, = 0 or p ,  = q,, and in these cases the only 
possible value of I is I = 1 ; hence the only possible values for I for type (ii) IUR is 1 = 0, 
+ o r  1. 

For type (i) IUR, (pl, p , ) ,  equation (37) becomes 

I1+pl +1+ip,1211-pl -3+ip,12(I+2p1+3)(1-2pl-5) = 0. (39) 

Now if p z  # 0 we can have only 1 = -(2p1 + 3) or 1 = (2p1 + 5). The two cases are in 
fact identical since both give the same values for I,, I,, namely 

so we need consider only 1 = (2p1 + 5). We therefore have the possibility of IUR with 
I = 3 , 2 , 3 , .  . . corresponding to the values -:, -3, -$, . . . of p l .  Using equations (8), 
(34), (35) and (40) we see that A,',Alf # 0, so none of these give IUR of the A1 = 2 type. 
Also from equation (35) we see that the hermiticity condition (0:)' < 0 implies that, if 
1 # O,+ or 1, 121, -(1+ 1)(1-3) < 0. For the above cases, for which I, is as given in (40), 
this expression = -$pg ,  so these values of 1 are, so far as the analysis given up to now is 
concerned, perfectly consistent with hermiticity. In the particular case when p ,  = 0,Op 
vanishes. 

When p ,  = 0, it is also possible that 2 can arise from the vanishing of (I+pl + 1) or 
(1 - p 1  - 3). Both cases give I, = +I(!- 2), I, = 0, so we need consider only 1 = (pl + 3). 
For such cases, however, substituting for I, in equation (35) gives 

(0:)' = 54!2(!- 1)2(21- 1)2, 

which is greater than or equal to 0 and hence violates hermiticity unless I = 0 , t  or 1. 
Hence no new values of 1 can arise in this way. 

To summarize, apart from the AI = 2 IUR, the analysis so far permits IUR with 
1 = 0, + or 1 of both type (i) and (ii), and in addition it permits IUR of type (i), ie (p l ,  p, ) ,  
with 1 = 3, 2,:, . . . corresponding to p1 = -%, -5, -%, .  . . , and arbitrary p , .  If we 
were to continue the analysis further we should get involved in 1 degeneracy, so shall not 
do so in the present paper. However, we can use the well known fact that non-compact 
simple groups, like SL(3, R), possess, apart from the trivial representation, only infinite 
dimensional IUR, so we can use the criteria that I,,, 1 does not exist to obtain further 
restrictions on the values of p and q and possibly I .  In I1 we obtained for SU(3) the 
following equation to be satisfied by f :  

7 3 5  

(f-p)(l+p+4)(f- q+ l ) ( l+  q+ 3)( f -p+ q+ l ) ( f+p-q+ 3) = 0. (41) 

I t  is not difficult to show that also for SL(3, R) if I exists it must be because ofthe vanishing 
of one of the factors in (41). 

For type (i) representations (41) becomes 

If-pl +ip,12)~+p, +4+ip,I2[i-2(pl + l)][t+2(pl +3)] = 0. (42) 

If p 2  # 0 1 would exist if either [1-2(p1 + l)] = 0 or [f+2(pl +3)] = 0; since f cannot 
exist we therefore have the restriction p1 # % I +  k )  where k is an integer greater than or 
equal to -2, and p1 # -*(1+k) where k is an integer greater than or equal to - 6  (this 
latter case could not occur anyway if 1+ k > 4). Further, if p ,  = 0, we must exclude the 
possibilities that ( l -p l )  = 0 and ( / + p i  +4) = 0, and these imply that p1 # I + j  where 
j is an integer greater than or equal to - 4. These are the further restrictions which apply 
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to  type (i) IUR with I = 0, + or 1. For the type (i) IUR with I = 2,2, $, . . . a straightforward 
check shows that the above conditions imply no further restrictions on the values of pl .  

For type (ii) IUR equation (41) becomes 

li+ 2 + ip,I2li + 2 + iq,121t + 2+ i(p, - q2)12 = O (43) 

none of these factors can vanish since 1 must be real and greater than or equal to 0 if 
it exists. Hence 1 cannot exist and no further restriction is obtained for type (ii) IUR. 

Finally, in this paper we consider the values of 0: and Q: for the case I = 1 since 
equations (34) and (35) are not valid in this case: When- I = 1, the substitution 
A , f ' A ; '  = 0 in (8) and A'iA;' = 0 in (9) both yield the same equation: 

(0:)'- 3Q: = 36(12I, + 19) (44) 
so do  not determine both 0: and Q: in terms of I , .  If, however, we substitute for Q: from 
(44) in equation (12) with A,"AT:A;2 = 0, we get 

O:[(O?)' - 72(91, + 3)] = 77764613 (45) 
and substituting for I , ,  I ,  in terms of ( p ,  q)  yields the following roots for the cubic 
equation (45) in 0:: 

0: = 2J6(2p + 3 - q), 0: = - 2 J6(p - 2q), 0: = -2J6(p+q+3) (46) 

For type (i) IUR the first value gives 0: = 44/6p, which satisfies hermiticity, 
whereas the second and third values violate hermiticity unless p1 = -2, in which case 
0: = -2J6ip2. For type (ii) IUR all three values satisfy hermiticity and yield the 
values 2,,'6i(2p2 - q,), 2J6i(2qz -pz) and - 2J6i(p2 + q 2 )  respectively. There would 
therefore appear to be three distinct IUR ( p z , q 2 )  with I = 1, all corresponding to 
different values of 07, and just one such IUR (pl ,  p , )  unless p1 = -2 in which case 
there are two IUR with I = 1. Further analysis might, of course, impose further 
restrictions. 
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